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Abstract
Although system memory bandwidths are high and in-
creasing in absolute terms, they are not growing nearly
as fast as available FLOPS rates. Thus, memory band-
width per core and per FLOP are shrinking; exascale sys-
tems are expected to have this ratio far lower than today’s
systems. As sparse matrices, often from meshes, are im-
portant in many scientific applications, and matrix-vector
multiplication is a common operation on them, moving
matrix data can consume a substantial part of a system’s
available memory bandwidth. Thus, sparse matrix com-
pression, both of index data and of values, will provide
important performance and power benefits at exascale and
should be adopted by applications.

Scientific applications, especially those that involve
solving partial differential equations, often include
linear algebra operations on sparse matrices such as
matrix-vector multiplication, solution of linear equa-
tions, and eigenvalue problems. For the latter two of
these operations, iterative methods are often used for
performance; these methods use matrix-vector mul-
tiplication as a fundamental operation. Thus, the per-
formance of these multiplication operations is often
important to overall application performance.

In traditional implementations of iterative meth-
ods, matrix-vector multiplications are done one-at-a-
time, with dependencies between successive multi-
plications that prevent their combination. Although
work has been done to alleviate this issue (e.g.,
the algorithms in [2] reuse matrix data across sev-
eral multiplications even though that work does not
consider memory bandwidth issues explicitly), these
approaches require modifications to the underlying
mathematical algorithms. For a single matrix-vector
multiplication (or a matrix-multiple vector multipli-
cation used in some algorithms), the data from the
matrix is only used once. In typical applications,
sparse matrices are large enough that they do not fit
into even the last level of system cache, and thus no
data reuse is possible. Because optimizations (both
hardware and software) can hide the latency of vec-
tor accesses and increase reuse for those, matrix data

can quickly become a bottleneck. Unlike latency,
bandwidth limitations cannot be hidden by multiple
threads or prefetching. This constraint has been pre-
viously identified and studied by Gropp et al [3], and
it is expected to be worse at exascale; according to
the 2008 DARPA Exascale Study:

Finally, the increase in main memory latency
and decrease in main memory bandwidth rel-
ative to processor cycle time and execution rate
continues. This trend makes memory band-
width and latency the performance-limiting fac-
tor for many applications, and often results in
sustained application performance that is only
a few percent of peak performance. [4, p. 27]

Memory traffic, along with other data transfers, is
also expected to consume a substantial part of an ex-
ascale system’s power budget:

For example, given that a DDR3 chip today
consumes just over 600 mW/GB/sec, the power
budget for an Exascale data center machine re-
quiring 1 EB/sec of main memory bandwidth
would be just over 600 megawatts, which is sim-
ply not viable. [4, p. 119]

The memory bandwidth constraint on matrix-
vector multiplication performance for a square ma-
trix can be expressed using the following formula:

T ≥ Nindex +Nvalue +2sn
bandwidth

(1)

In the formula, T is the total multiplication time in
seconds, Nindex is the number of bytes of matrix index
data, Nvalue is the number of bytes of matrix value
data, s is the size of a single matrix or vector element,
n is the dimension of the matrix, and bandwidth is
the memory bandwidth in bytes per second. This
formula is idealized: it assumes that there is perfect
reuse of the vector data, and that neither the matrix
nor vectors start in cache. It thus provides a lower
bound on the time for a single multiplication opera-
tion. The formula shows that reducing the size of the



matrix index and/or value data will have a direct ben-
efit for achievable performance. For a compressed
sparse row matrix using double-precision values and
32-bit integers, the formula can be simplified to the
following, based on calculations in [6]:

T ≥ 12nnz+20n+4
bandwidth

(2)

Even with suboptimal reuse of vectors leading to in-
creases in the coefficient of n, this formula gives a
real constraint since nnz is much greater than n in
practice. Therefore, compressing the matrix index
and/or value data provides a performance benefit, as
long as the data can be decompressed on the fly dur-
ing the matrix-vector multiplication. Using the ide-
alized formula, just compressing the index data by a
ratio of 1− r, as in [6], reduces the time bound to:

T ≥ (4r+8)nnz+(4r+16)n+4r
bandwidth

(3)

Compressing the matrix’s data values (as done,
for example, by [5]) or the vectors provides an even
greater improvement. Several authors have showed
practical improvements on real systems based on
these techniques. For example, Willcock and Lums-
daine [6] compress the index data of a variety of rep-
resentative matrices by factors of 40–90%, leading
to performance improvements up to 30%; the actual
performance of one of their algorithms is shown in
Figure 1. Even with the time of compression and de-
compression included, relatively few operations with
the same matrix pattern are required to provide a net
benefit. The work in [5] evaluates index and value
compression on multi-core systems, using simpler
compression algorithms that compress less aggres-
sively but can be optimized more effectively for de-
compression and multiplication performance. The
value compression in that work looks for repeated
coefficients in the matrix and stores only unique val-
ues, leading to greater compression and performance
improvement for some matrices.

Preconditioning is often considered important to
the performance of iterative methods for sparse lin-
ear algebra. Several types of preconditioners, includ-
ing incomplete LU and Cholesky factorizations and
sparse approximate inverse approaches, use the input
sparse matrix’s pattern or modifications of it as the
pattern of the preconditioning matrix (or its factors).
These methods then use matrix-vector multiplication
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Fig. 1: Performance using one compression algo-
rithm from [6]; green dots represent indi-
vidual matrices from the Matrix Market and
University of Florida collection [1].

or triangular solve operations to apply the precondi-
tioner. Both of these operations have fundamentally
the same issue as the original matrix-vector multipli-
cation problem: a large matrix is processed against
a vector and the matrix data is too large to remain in
cache across multiple operations. Thus, compression
algorithms help in this case as well.

Compression is likely to provide further benefit in
the future. As bandwidth limitations become more
stringent, compression will become more effective
for performance. The increasing flexibility of bit-
wise and SIMD operations on modern and upcom-
ing processors is likely to allow better compression
ratios to be possible while still achieving high de-
compression performance; branches also have lower
latency penalties that are easier to hide with multiple
threads. Some work has already taken advantage of
limited matrix bandwidths to reduce index data sizes
on GPUs [7]. Taking advantage of information on
the sources of the matrices being processed (such as
that they are finite element matrices assembled from
a mesh) can also provide benefit, even when meth-
ods still use fully assembled, explicitly stored ma-
trices. Finally, time skewing and similar methods
allow matrix data to be reused across several matrix-
vector multiplications (with adjustments to the math-
ematical analyses and structures of the iterative al-
gorithms themselves), but matrix transfer speeds are
still a performance bottleneck even with those im-
provements [2].
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